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ABSTRACT

We used several machine learning algorithms to predict ¢fiecd

tive modules in five NASA products, namely, CM1, JM1, KC1,
KC2, and PC1. A set of static measures were used as predic-
tor variables. While doing so, we observed that a large porti

of the modules were small, as measured by lines of code (LOC).
When we experimented on the data subsets created by partgio
according to module size, we obtained higher predictiorfoper
mance for the subsets that include larger modules. We also pe
formed defect prediction using class-level data for KCheathan
method-level data. In this case, the use of class-levelrdatdted

in improved prediction performance compared to using matho
level data. These findings suggest that quality assuraniétias

can be guided even better if defect predictions are made iog us
data that belong to larger modules.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complexity measures, prod-
uct metrics D.2.9 [Software Engineering]: Management-Soft-
ware quality assurance

General Terms
Measurement, Management, Reliability.

Keywords

Software Quality Management, Defect Prediction, Prediciod-
els, Software Metrics, Static Measures.

1. INTRODUCTION

Defective modules pose considerable risk by decreasirtgmes
satisfaction and by increasing the development and maintan
costs. Therefore, in software development life cycle, idésir-
able to predict defective modules as early as possible. ctifée
risk prediction models can improve software developerditalio
identify the defect-prone modules and focus quality asmeac-
tivities such as testing and inspections on those modules.
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Static measures obtained from source code, such as size, com
plexity, coupling, and cohesion measures, have been as$sdci
with the risk factors such as defects and change. Some obszar
found a strong relationship between these measures anéadsk
tors (e.g. [4]), whereas the other researchers found weaooy
supportive evidence as explained by Shepperd and Ince @@jith.

To a certain extent, the differences in the research resait®e due

to the variation in the nature of software development bseaf
the differences in development processes, skill levelsxperise

of the programmers, problem difficulty, and so on. Howevee, t
differences in the results were wide enough to create twogsp
one believing in the merits of static measures and predigtiod-
els, and the other remaining skeptical. The recently emgrgoft-
ware repositories allow us to bring additional empiricaldewnce
by working on the same data sets and by having an open disaussi
about our methodologies and results.

For this purpose, we studied the publicly available data biea
long to five NASA products, CM1, JM1, KC1, KC2, and PCEor
each module, the related data sets included a set of statisures
and a binary variable that takes true value if there are onaae
defects reported for that module, and false otherwise. \Weday-
eral prediction models using the machine learning algoritlavail-
able in the tool Weka [12]. The results were neither discgimng
nor very promising. However, when we took a closer look at the
data, our first observation was that the majority of the meslith
these data sets can be categorized as small modules. Teergéo
decided to investigate the effect of module size on the padioce
of defect prediction models.

Recently, EI-Emam et al. mentioned the confounding efféct o

class size on the validity of the object oriented measurgsTzey
found that after controlling for size, none of the objedeated
metrics they studied were associated with fault-proneaegsore.
In our study, our focus was not on validating individual meas,
but on applying data mining techniques and using all avkildata
to build defect prediction models. However, while doing ear
observations were generally aligned with those made byrihia
etal.

Size is an important measure because the other static nesasur
usually depend on size. A number of previous studies shotesd t
defect count is positively correlated with size. Thereforemally,
machine learning algorithms can be expected to predictatgel
modules as defectives with a higher probability. Howeveqlitain
better predictions, machine learning algorithms shoutéatenore
specific patterns for defective modules. When a data setgtlgr
populated by small modules, the following reasons can Itit
ability of machine learning algorithms to find such patterns

91The data sets are available on-line at:
http://promise.site.uottawa.ca/SERepository/dasagate.html



n | Min. | 1st| Median| Mean| 3rd | Max.

Qu. Qu.
cml 498 1 8 17 | 29.64| 31 423
jm1 | 10,885 1] 11 23| 42.02| 46 | 3,442
kel | 2,109 1 3 92037 24 288
kc2 522 1 4 13| 36.89| 45| 1,275
pcl | 1,109 0 7 13| 23.38| 26 602

Table 1: Summary of the Size Data as Measured by Lines of
Code (LOC) in the Examined Products

e For small modules, the static measures other than LOC are

also likely to be small, or in other words, closer to zero.
Therefore, the characteristics of small modules might show
little variation. This similarity can make it difficult for ena-
chine learning algorithm to distinguish between small defe
tive and small non-defective modules.
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e The measurements for large modules will have a better chance,:igure 1: (a) LOC Histogram for KC1 (b) LOC Histogram for

to show variation. However, the small percentage of large

modules in a data set may not be enough to train the mod-

els to distinguish between defective and non-defectivgelar
modules.

To overcome the above problems, measurements, defectimgunt
and defect prediction could be done for larger modules. Videllsh
mention that, to do so, the system should be large enougtoto pr
vide enough number of data points which would allow statisti
cally meaningful conclusions. In this case, instead of gisimary
(true/false) values to indicate defectiveness for eachuleodie-
fect count could be obtained. In such a scheme, high-defedt m
ules, for example the top N% in defect ranking, could be lathels
“risky”, and prediction models could be built to predict #gorisky
modules.

In this paper, we report the results of our study which exgdor
the effect of module size on defect prediction and the paikipén-
efits of using larger modules for prediction.At this poinisiuseful
to give the definition oflefectin this study because it might have an
effect on the prediction models as mentioned by Nikora and-Mu
son [8]. Defect is defined as “a change needed in a softwarelieod
because of a problem or a combination of related problemsftn s
ware”. Next, we start with a preliminary analysis of the deg#s.

2. PRELIMINARY DATA ANALYSIS

Considering the relationship between size and the efientiss
of the defect prediction models, we first examined the modizie

in the products that we studied. Table 1 shows a summary of the

size data for all products. From the median and average saiue

can be seen that the module size of these products can be-categ

rized as small. For example, in KC1, the median value coardp

to 9 LOC. PC1 included relatively larger modules with the raad

of 23 and the mean of 42.02. However, Table 1 demonstratei tha

is fair to say that most modules in these data sets are smédliles
Following that, for each product, we examined the LOC his-

togram of the product and that of the defective modules imptbd-

uct. Figure 1 compares the LOC histogram of KC1 with the LOC

Defective Modulesin KC1.

[ Product]  Test Result (W and p-value) ]
CM1 W =6556.5, p-value = 8.84e-0§
JM1 W = 7459131, p-value < 2.2e-16
KC1 W =176142.5, p-value < 2.2e-16
KC2 W =12637.5, p-value < 2.2e-14
PC1 W = 26290, p-value = 1.624e-08

Table 2: Wilcoxon Rank Sum Test Results

each product, as produced by the statistical analysis tfb0DRare
given in Table 2.

From the results of the preliminary analysis, we can sayttiet
larger modules have a higher chance to be defective whichae-i
cordance with the observations made by the previous studims-
ever, the average and median values for module size in tteae d
sets are very small. It should be noted that the average maizé
in the previous studies of defect prediction was much higker
example, in [6], Khoshgoftaar et al. measured 13 million LfoC
7,000 modules, having an average module size of approxiynate
1,860 LOC. In [5], Khoshgoftaar et al. reported their restr
a sample of 1.3 million LOC for 1,980 modules, having an aver-

age around 650 LOC. Tian and Nguyenta used tree-based models

for Nortel Networks products which had 1,000 modules wita th
average of 1,000 LOC [11].

3. DEFECT PREDICTION ON SUBSETS

Atthis step, for each original data set, we obtained fiftadissts
by recursively partitioning in half after ranking the modslaccord-
ing to their size. After each partitioning, we mixed the daténts
in the subsets randomly to provide an unbiased learningnsehe
for the cross-validation runs. Figure 2 shows the namingseh
for these subsets. We found it appropriate to stop at thd téiel
where the subsets still included enough number of data péant

histogram of the defective modules in KC1. It can be seen that machine learning.

the defective modules are shifted to the right of the whoteirse
terms of LOC distribution. The same situation occurred Irfied
products. We also used formal hypothesis testing to teshtile
hypothesis that the two samples come from the same disorbut
Wilcoxon Rank-Sum test [3], which is robust to non-normgalie-
jected this null hypothesis for all products. The W and psealfor

After that, we ran several machine learning algorithms an th
subsets in an exploratory manner and made some observakions
the prediction performance. The measures of predictiofioper
manceprecision recall, andF-measureare explained in Figure 3.
Normally, the choice of the machine learning algorithm adjst-
ment of the model parameters affect the performance of theg mo
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CONFUSIONMATRIX

Predicted
= NODEF | DEF
2 | NODEF a b
< | DEF c d

Precision=d/ (b + d) Recall=d/ (c+d)
F-Measure = 2 * Recall * Precision / (Recall + Precision)

Figure 3: Measures of Prediction Performance on a Typical
Confusion Matrix (NODEF: Not Defective DEF: Defective)

els. Among many machine learning algorithms implemented in
Weka, we chose to report our results for two algorithms J48 an
KStar. We generally obtained better prediction perfornesnweith

J48 and KStar. However, it should be noted that comparing the
performances of different algorithms was not the focal pofrthis
study.

J48 is a decision tree learner and has been also used foit defec
detection by Menzies et al. on the same original data setS@g
model generated by a decision tree learner is a simple tnectgte
where non-terminal nodes represent tests on one or moiguts
and terminal nodes reflect decision outcomes. Besideseadedse
ture of J48 is that tree-based models are easy to intermettli
by human experts. The foundations of tree-based modelsxare e
plained in detail in [1]. KStar is an instance-based learrére
classification is done for an instance based on the majddagses
of K closest instances where the closeness is measuredgthrou
some similarity measure (here, entropic distance measiteye
information on both algorithms can be found in [12].

In some other algorithms available in the tool Weka, the nwde
are generated based on the statistical information abeutérall
effects of all features and all instances. These modelsraveik to
give unsatisfactory performance on very skewed data whithe

case in our data sets. Some examples are Bayes Network,INeura

Network, and Support Vector Machine. In our exploratory lgna
ses, we found that the prediction performance was poor ukage
algorithms. For instance, when Neural Networks (or Mujtda
Perceptrons) is run for CM1 by its default parameters, gienij
recall, and F-measure for defective modules were 0.062, @uid
0.031, respectively.

We developed a set of PERL programs and shell scripts which
call the related classes of the tool Weka to execute J48 andrKS
using a comprehensive set of parameter-value combinatitmey
recorded the best precision, recall, and F-Measure reantisthe
parameters corresponding to those best results. Whennpirgge
the results, we use F-Measure because it takes both precia
recall into account. F-Measure is used popularly when tammpr
the performance of prediction models. The resulting plats be
seen in Figure 4 and Figure 5 for J48 and KStar, respectivéig.
plots are divided by dashed lines vertically to show theedéht
levels of the partitioning scheme shown in Figure 2. It caséen
that, at each level, F-Measure values are higher for theessiltisat
contain larger modules and, generally, there is an upwarttof
F-Measure. We should note that, in PC1, there were some small
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modules with the same measurement values that caused many ma
chine learning algorithms to predict them as defective neslbut

no other modules. We considered it as a rather unusual cake an
removed those data points before the analysis.

4. DEFECT PREDICTION USING CLASS
LEVEL DATA FROM KC1

From our analyses on the subsets of the available data sets, w
concluded that the module size has an effect on the perfarenan
of defect prediction. In the datasets that include small ulexs]
the prediction performance was poor. Therefore, we loolad f
additional data that belong to the same products but celiieftir
modules that are at a higher abstraction level.

We found that KC1 has both class and method level measures
posted on-line at the NASA Metrics Program web&ite addition
to using the already available class level measures, fdr elass,
we aggregated the method level measures to class level.n®uri
this process, we took the minimum, maximum, sum, and average
values. There was also a defect file, in which, each defecy ent
was associated with a method. We obtained the defect dalasat ¢
level too. We made the resulting data sets and the R functed u
to create them on-line and publicly availahl@he class level data
for KC1 included 145 data points. The summary of the size and
defect data for this data set can be seen in Table 3.

92http://mdp.ivv.nasa.gov
93http://lumbc.edu/ gkoru/data/kcl



Statistics

| Size (LOC)] Defect Count]

Minimum 1.0 0
1st Quarter 44.0 0
Median 162.0 0
Mean 296.3 4.61
3rd Quarter 315.0 4.00
Maximum 2,883.0 101.00
Total 42,963 669

Table 3: Summary of Size (LOC) and Defect Count for Class
Level KC1 Data

L

3

8

DF 2

Number of Modules 60 8
LOC Covered 30,728 10,940
Percentage of Total LOC 72% 25%
Minimum LOC 64 157
Median LOC 286 1,195
Average LOC 512 | 1,367.5
Maximum LOC 2,883| 2,883
Total Defect Count 669 293
Percentage of Total Defects 100% 44%
Minimum Defect Count 1 22
Median Defect Count 6 25
Average Defect Count 11.15| 36.63
Maximum Defect Count 101 101

Table 4: Summary of DF and Topb%DF for KC1

| | Precision] Recall | F-Measure|

DF[ HR 62 68 65
LMR 76 71 73

Tor5%DF HR .50 .63 .56
LMR 98 96 97

KC1Dataat| DEF 51 24 33
PROMISE Site[ NODEF 87 96 o1

Table 5: Precision, Recall, and F-Measure (HR: High Risk,
LMR: Low and Marginal Risk, DEF: Defective, NODEF: Not
Defective)

5. DISCUSSION OF KC1RESULTS

As mentioned before, in the KC1 data set posted at the PROMISE
workshop web site, modules are labeled as defective or fetde
tive. In Table 5, it can be seen that using this data set, Irecal
.24,

The precision and recall when predicting the defectivesdas
(DF) is high, however, since there are 60 modules with at leas
or more defects covering 72% of the total source code, piiedic
the defective classes is perhaps not an ambitious purpose.

In ToP5%DF, precision was .5 and recall was equal to .63. This
means that, out of the 8 modules i@ %DF defect ranking, 5
of them was predicted correctly. Weka did not allow us to tdgn
exactly which instances (data points or modules) were ctiyre
classified because cross-validation in Weka shuffles thtarines
and changes their order in the output. However, considetiag
the average defect count fooP5%DF was around 37, we can say
185 defects from 669 would be caught.

Another advantage of using large modules is that the masager
and programmers can easily recognize them and make theejud
ments to further investigate them or not. When the inspsabor

From Table 3, it can be seen that when we accept classes as modtesters are given larger modules that have a very high pilityeb

ules, the median and average module size is a bit closer @ tho
appeared in the literature. This time instead of only hawnigj-
nary value to indicate defectiveness, we also had defecttdou
each class. We built our models both to predict the defectasses
(DF), which were associated with at least one defect re@ord to
predict the top 5 percent @P5%DF) classes in the defect rank-
ing. Table 4 gives a summary of the size and defect count sethe
groups of modules.

We used J48 to predict the modules that fall into these topatlef
module groups. The specific program call was:

wekaclassifierstreesJ48 —C0.25 —M8.

We set the minimum number of instances at any leaf node to 8.
Again, 10-fold cross validation was used. To obtain evenebet
estimates, we found the averages for these values over fH-dif
ent runs with different randomization seed values used Ifossz
validation shuffling in each run. Table 5 shows the resulpregi-
sion, recall, and F-Measure values.

contain a large number of defects, they can better locateribie
lems and see overall opportunities to eliminate the defeatsim-
prove code quality because the surrounding code will alewige
some context information.

The use of tree-based algorithms such as J48 can help man-
agers and developers to both predict and characterize thdeto
fect modules. For example, the decision tree that we olddioe
ToP5%DF using the whole data set was a very simple 1-level tree
that can be defined by the rule:

sumNUM_UNIQUE_OPERATORS <= 285: LMR
sumNUM_UNIQUE_OPERATORS > 285: HR

In this tree-based model, the whole set of data points in KE1 |
cated in the root node are divided into two parts using the cut
off value of 285 of the metric sumNUM_UNIQUE_OPERATORS.
The classes with greater values are predicted as HR (in #sis ¢
ToP5%DF) and those with smaller values are predicted to be LMR.
Such models can be easily understood and interpreted byrhuma
experts. Of course, the model can be extended to have mais lev
and to fit the data for better characterization of the datehestever

the prediction performance on cross validation and on new skets

will drop in that case.

6. CONCLUSIONS

Based on our experiments on the data subsets obtained Iy part
tioning according to size, we observed that predictabilias poor
for the subsets that included small components. In KC1, we ob
served that using class level data was a preferable alieen&on-



sidering these results, it can be preferred to perform degfeclic- | MEASURENAME |

tion for large components rather than small components.ti#ero PERCENT_PUB_DATA
action could be, for small components, shifting the levestattic ACCESS_TO_PUB_DATA
measures and defect count to a higher abstraction levelasitoi COUPLING_BETWEEN_OBJECTS
what we have done in KC1 by shifting the static measures and de DEPTH
fect data from method level to class level. LACK_OF COHESION_OF METHODS
NUM_OF_CHILDREN
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Table 7: Method Level Measures Transformed to Class L evel

The long names of the static measures in Table 6 and Table 7 can
be found at http://mdp.ivv.nasa.gov/mdp_glossary.html.

APPENDIX
A. STATIC MEASURESFOR KC1

For KC1, we used already available object-oriented measure
These are given in Table 6. There were also a set of measures at
module level given in Table 7. We transformed them to clagslle
using minimum, maximum, average, and sum operations. There
fore, for each measure in Table 7, we obtained four clasd leve
measures. For example, for NUM_UNIQUE_OPERATORS, we
obtained:



