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ABSTRACT
We used several machine learning algorithms to predict the defec-
tive modules in five NASA products, namely, CM1, JM1, KC1,
KC2, and PC1. A set of static measures were used as predic-
tor variables. While doing so, we observed that a large portion
of the modules were small, as measured by lines of code (LOC).
When we experimented on the data subsets created by partitioning
according to module size, we obtained higher prediction perfor-
mance for the subsets that include larger modules. We also per-
formed defect prediction using class-level data for KC1 rather than
method-level data. In this case, the use of class-level dataresulted
in improved prediction performance compared to using method-
level data. These findings suggest that quality assurance activities
can be guided even better if defect predictions are made by using
data that belong to larger modules.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, prod-
uct metrics; D.2.9 [Software Engineering]: Management—Soft-
ware quality assurance

General Terms
Measurement, Management, Reliability.

Keywords
Software Quality Management, Defect Prediction, Prediction Mod-
els, Software Metrics, Static Measures.

1. INTRODUCTION
Defective modules pose considerable risk by decreasing customer

satisfaction and by increasing the development and maintenance
costs. Therefore, in software development life cycle, it isdesir-
able to predict defective modules as early as possible. Effective
risk prediction models can improve software developers’ ability to
identify the defect-prone modules and focus quality assurance ac-
tivities such as testing and inspections on those modules.
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Static measures obtained from source code, such as size, com-
plexity, coupling, and cohesion measures, have been associated
with the risk factors such as defects and change. Some researchers
found a strong relationship between these measures and riskfac-
tors (e.g. [4]), whereas the other researchers found weak ornon-
supportive evidence as explained by Shepperd and Ince [9] indepth.
To a certain extent, the differences in the research resultscan be due
to the variation in the nature of software development because of
the differences in development processes, skill levels or expertise
of the programmers, problem difficulty, and so on. However, the
differences in the results were wide enough to create two groups;
one believing in the merits of static measures and prediction mod-
els, and the other remaining skeptical. The recently emerging soft-
ware repositories allow us to bring additional empirical evidence
by working on the same data sets and by having an open discussion
about our methodologies and results.

For this purpose, we studied the publicly available data that be-
long to five NASA products, CM1, JM1, KC1, KC2, and PC11. For
each module, the related data sets included a set of static measures
and a binary variable that takes true value if there are one ormore
defects reported for that module, and false otherwise. We built sev-
eral prediction models using the machine learning algorithms avail-
able in the tool Weka [12]. The results were neither discouraging
nor very promising. However, when we took a closer look at the
data, our first observation was that the majority of the modules in
these data sets can be categorized as small modules. Therefore, we
decided to investigate the effect of module size on the performance
of defect prediction models.

Recently, El-Emam et al. mentioned the confounding effect of
class size on the validity of the object oriented measures [2]. They
found that after controlling for size, none of the object-oriented
metrics they studied were associated with fault-pronenessanymore.
In our study, our focus was not on validating individual measures,
but on applying data mining techniques and using all available data
to build defect prediction models. However, while doing so,our
observations were generally aligned with those made by El-Emam
et al.

Size is an important measure because the other static measures
usually depend on size. A number of previous studies showed that
defect count is positively correlated with size. Therefore, normally,
machine learning algorithms can be expected to predict the large
modules as defectives with a higher probability. However, to obtain
better predictions, machine learning algorithms should detect more
specific patterns for defective modules. When a data set is greatly
populated by small modules, the following reasons can limitthe
ability of machine learning algorithms to find such patterns:
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n Min. 1st Median Mean 3rd Max.
Qu. Qu.

cm1 498 1 8 17 29.64 31 423
jm1 10,885 1 11 23 42.02 46 3,442
kc1 2,109 1 3 9 20.37 24 288
kc2 522 1 4 13 36.89 45 1,275
pc1 1,109 0 7 13 23.38 26 602

Table 1: Summary of the Size Data as Measured by Lines of
Code (LOC) in the Examined Products

• For small modules, the static measures other than LOC are
also likely to be small, or in other words, closer to zero.
Therefore, the characteristics of small modules might show
little variation. This similarity can make it difficult for ama-
chine learning algorithm to distinguish between small defec-
tive and small non-defective modules.

• The measurements for large modules will have a better chance
to show variation. However, the small percentage of large
modules in a data set may not be enough to train the mod-
els to distinguish between defective and non-defective large
modules.

To overcome the above problems, measurements, defect counting,
and defect prediction could be done for larger modules. We should
mention that, to do so, the system should be large enough to pro-
vide enough number of data points which would allow statisti-
cally meaningful conclusions. In this case, instead of using binary
(true/false) values to indicate defectiveness for each module, de-
fect count could be obtained. In such a scheme, high-defect mod-
ules, for example the top N% in defect ranking, could be labeled as
“risky”, and prediction models could be built to predict those risky
modules.

In this paper, we report the results of our study which explored
the effect of module size on defect prediction and the potential ben-
efits of using larger modules for prediction.At this point, it is useful
to give the definition ofdefectin this study because it might have an
effect on the prediction models as mentioned by Nikora and Mun-
son [8]. Defect is defined as “a change needed in a software module
because of a problem or a combination of related problems in soft-
ware”. Next, we start with a preliminary analysis of the datasets.

2. PRELIMINARY DATA ANALYSIS
Considering the relationship between size and the effectiveness

of the defect prediction models, we first examined the modulesize
in the products that we studied. Table 1 shows a summary of the
size data for all products. From the median and average values, it
can be seen that the module size of these products can be catego-
rized as small. For example, in KC1, the median value corresponds
to 9 LOC. PC1 included relatively larger modules with the median
of 23 and the mean of 42.02. However, Table 1 demonstrates that it
is fair to say that most modules in these data sets are small modules.

Following that, for each product, we examined the LOC his-
togram of the product and that of the defective modules in theprod-
uct. Figure 1 compares the LOC histogram of KC1 with the LOC
histogram of the defective modules in KC1. It can be seen that
the defective modules are shifted to the right of the whole set in
terms of LOC distribution. The same situation occurred in all five
products. We also used formal hypothesis testing to test thenull
hypothesis that the two samples come from the same distribution.
Wilcoxon Rank-Sum test [3], which is robust to non-normality, re-
jected this null hypothesis for all products. The W and p-values for
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Figure 1: (a) LOC Histogram for KC1 (b) LOC Histogram for
Defective Modules in KC1.

Product Test Result (W and p-value)

CM1 W = 6556.5, p-value = 8.84e-08
JM1 W = 7459131, p-value < 2.2e-16
KC1 W = 176142.5, p-value < 2.2e-16
KC2 W = 12637.5, p-value < 2.2e-16
PC1 W = 26290, p-value = 1.624e-08

Table 2: Wilcoxon Rank Sum Test Results

each product, as produced by the statistical analysis tool R[10], are
given in Table 2.

From the results of the preliminary analysis, we can say thatthe
larger modules have a higher chance to be defective which is in ac-
cordance with the observations made by the previous studies. How-
ever, the average and median values for module size in these data
sets are very small. It should be noted that the average module size
in the previous studies of defect prediction was much higher. For
example, in [6], Khoshgoftaar et al. measured 13 million LOCfor
7,000 modules, having an average module size of approximately
1,860 LOC. In [5], Khoshgoftaar et al. reported their results for
a sample of 1.3 million LOC for 1,980 modules, having an aver-
age around 650 LOC. Tian and Nguyenta used tree-based models
for Nortel Networks products which had 1,000 modules with the
average of 1,000 LOC [11].

3. DEFECT PREDICTION ON SUBSETS
At this step, for each original data set, we obtained fifteen subsets

by recursively partitioning in half after ranking the modules accord-
ing to their size. After each partitioning, we mixed the datapoints
in the subsets randomly to provide an unbiased learning scheme
for the cross-validation runs. Figure 2 shows the naming scheme
for these subsets. We found it appropriate to stop at the third level
where the subsets still included enough number of data points for
machine learning.

After that, we ran several machine learning algorithms on the
subsets in an exploratory manner and made some observationsabout
the prediction performance. The measures of prediction perfor-
mance,precision, recall, andF-measure, are explained in Figure 3.
Normally, the choice of the machine learning algorithm and adjust-
ment of the model parameters affect the performance of the mod-
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Figure 2: Naming Scheme for Subsets of Data
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Figure 3: Measures of Prediction Performance on a Typical
Confusion Matrix (NODEF: Not Defective DEF: Defective)

els. Among many machine learning algorithms implemented in
Weka, we chose to report our results for two algorithms J48 and
KStar. We generally obtained better prediction performances with
J48 and KStar. However, it should be noted that comparing the
performances of different algorithms was not the focal point of this
study.

J48 is a decision tree learner and has been also used for defect
detection by Menzies et al. on the same original data sets [7]. The
model generated by a decision tree learner is a simple tree structure
where non-terminal nodes represent tests on one or more attributes
and terminal nodes reflect decision outcomes. Besides, a nice fea-
ture of J48 is that tree-based models are easy to interpret directly
by human experts. The foundations of tree-based models are ex-
plained in detail in [1]. KStar is an instance-based learner. The
classification is done for an instance based on the majority classes
of K closest instances where the closeness is measured through
some similarity measure (here, entropic distance measure). More
information on both algorithms can be found in [12].

In some other algorithms available in the tool Weka, the models
are generated based on the statistical information about the overall
effects of all features and all instances. These models are known to
give unsatisfactory performance on very skewed data which is the
case in our data sets. Some examples are Bayes Network, Neural
Network, and Support Vector Machine. In our exploratory analy-
ses, we found that the prediction performance was poor usingthese
algorithms. For instance, when Neural Networks (or Multilayer
Perceptrons) is run for CM1 by its default parameters, precision,
recall, and F-measure for defective modules were 0.067, 0.02, and
0.031, respectively.

We developed a set of PERL programs and shell scripts which
call the related classes of the tool Weka to execute J48 and KStar
using a comprehensive set of parameter-value combinations. They
recorded the best precision, recall, and F-Measure resultsand the
parameters corresponding to those best results. When presenting
the results, we use F-Measure because it takes both precision and
recall into account. F-Measure is used popularly when reporting
the performance of prediction models. The resulting plots can be
seen in Figure 4 and Figure 5 for J48 and KStar, respectively.The
plots are divided by dashed lines vertically to show the different
levels of the partitioning scheme shown in Figure 2. It can beseen
that, at each level, F-Measure values are higher for the subsets that
contain larger modules and, generally, there is an upward trend of
F-Measure. We should note that, in PC1, there were some small
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Figure 4: F-measures of Subsets Using J48
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Figure 5: F-measures of Subsets Using KStar

modules with the same measurement values that caused many ma-
chine learning algorithms to predict them as defective modules but
no other modules. We considered it as a rather unusual case and
removed those data points before the analysis.

4. DEFECT PREDICTION USING CLASS
LEVEL DATA FROM KC1

From our analyses on the subsets of the available data sets, we
concluded that the module size has an effect on the performance
of defect prediction. In the datasets that include small modules,
the prediction performance was poor. Therefore, we looked for
additional data that belong to the same products but collected for
modules that are at a higher abstraction level.

We found that KC1 has both class and method level measures
posted on-line at the NASA Metrics Program web site2. In addition
to using the already available class level measures, for each class,
we aggregated the method level measures to class level. During
this process, we took the minimum, maximum, sum, and average
values. There was also a defect file, in which, each defect entry
was associated with a method. We obtained the defect data at class
level too. We made the resulting data sets and the R function used
to create them on-line and publicly available3. The class level data
for KC1 included 145 data points. The summary of the size and
defect data for this data set can be seen in Table 3.

92http://mdp.ivv.nasa.gov
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Statistics Size (LOC) Defect Count

Minimum 1.0 0
1st Quarter 44.0 0
Median 162.0 0
Mean 296.3 4.61
3rd Quarter 315.0 4.00
Maximum 2,883.0 101.00
Total 42,963 669

Table 3: Summary of Size (LOC) and Defect Count for Class
Level KC1 Data

DF T
o

p5
%

D
F

Number of Modules 60 8
LOC Covered 30,728 10,940
Percentage of Total LOC 72% 25%
Minimum LOC 64 157
Median LOC 286 1,195
Average LOC 512 1,367.5
Maximum LOC 2,883 2,883
Total Defect Count 669 293
Percentage of Total Defects 100% 44%
Minimum Defect Count 1 22
Median Defect Count 6 25
Average Defect Count 11.15 36.63
Maximum Defect Count 101 101

Table 4: Summary of DF and Top5%DF for KC1

From Table 3, it can be seen that when we accept classes as mod-
ules, the median and average module size is a bit closer to those
appeared in the literature. This time instead of only havinga bi-
nary value to indicate defectiveness, we also had defect count for
each class. We built our models both to predict the defectiveclasses
(DF), which were associated with at least one defect record,and to
predict the top 5 percent (TOP5%DF) classes in the defect rank-
ing. Table 4 gives a summary of the size and defect count in these
groups of modules.

We used J48 to predict the modules that fall into these top defect
module groups. The specific program call was:

weka.classi f iers.trees.J48 −C0.25 −M8 .

We set the minimum number of instances at any leaf node to 8.
Again, 10-fold cross validation was used. To obtain even better
estimates, we found the averages for these values over 10 differ-
ent runs with different randomization seed values used for cross-
validation shuffling in each run. Table 5 shows the resultingpreci-
sion, recall, and F-Measure values.

DF

TOP5%DF

KC1 Data at
PROMISE Site

Precision Recall F-Measure

HR .62 .68 .65
LMR .76 .71 .73
HR .50 .63 .56

LMR .98 .96 .97
DEF .51 .24 .33

NODEF .87 .96 .91

Table 5: Precision, Recall, and F-Measure (HR: High Risk,
LMR: Low and Marginal Risk, DEF: Defective, NODEF: Not
Defective)

5. DISCUSSION OF KC1 RESULTS
As mentioned before, in the KC1 data set posted at the PROMISE

workshop web site, modules are labeled as defective or not defec-
tive. In Table 5, it can be seen that using this data set, recall was
.24.

The precision and recall when predicting the defective classes
(DF) is high, however, since there are 60 modules with at least one
or more defects covering 72% of the total source code, predicting
the defective classes is perhaps not an ambitious purpose.

In TOP5%DF, precision was .5 and recall was equal to .63. This
means that, out of the 8 modules in TOP5%DF defect ranking, 5
of them was predicted correctly. Weka did not allow us to identify
exactly which instances (data points or modules) were correctly
classified because cross-validation in Weka shuffles the instances
and changes their order in the output. However, consideringthat
the average defect count for TOP5%DF was around 37, we can say
185 defects from 669 would be caught.

Another advantage of using large modules is that the managers
and programmers can easily recognize them and make their judge-
ments to further investigate them or not. When the inspectors or
testers are given larger modules that have a very high probability to
contain a large number of defects, they can better locate theprob-
lems and see overall opportunities to eliminate the defectsand im-
prove code quality because the surrounding code will also provide
some context information.

The use of tree-based algorithms such as J48 can help man-
agers and developers to both predict and characterize the top de-
fect modules. For example, the decision tree that we obtained for
TOP5%DF using the whole data set was a very simple 1-level tree
that can be defined by the rule:

sumNUM_UNIQUE_OPERATORS <= 285: LMR
sumNUM_UNIQUE_OPERATORS > 285: HR

In this tree-based model, the whole set of data points in KC1 lo-
cated in the root node are divided into two parts using the cut-
off value of 285 of the metric sumNUM_UNIQUE_OPERATORS.
The classes with greater values are predicted as HR (in this case
TOP5%DF) and those with smaller values are predicted to be LMR.
Such models can be easily understood and interpreted by human
experts. Of course, the model can be extended to have more levels
and to fit the data for better characterization of the data set, however
the prediction performance on cross validation and on new data sets
will drop in that case.

6. CONCLUSIONS
Based on our experiments on the data subsets obtained by parti-

tioning according to size, we observed that predictabilitywas poor
for the subsets that included small components. In KC1, we ob-
served that using class level data was a preferable alternative. Con-



sidering these results, it can be preferred to perform defect predic-
tion for large components rather than small components. Another
action could be, for small components, shifting the level ofstatic
measures and defect count to a higher abstraction level similar to
what we have done in KC1 by shifting the static measures and de-
fect data from method level to class level.
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APPENDIX

A. STATIC MEASURES FOR KC1
For KC1, we used already available object-oriented measures.

These are given in Table 6. There were also a set of measures at
module level given in Table 7. We transformed them to class level
using minimum, maximum, average, and sum operations. There-
fore, for each measure in Table 7, we obtained four class level
measures. For example, for NUM_UNIQUE_OPERATORS, we
obtained:

MEASURENAME

PERCENT_PUB_DATA
ACCESS_TO_PUB_DATA
COUPLING_BETWEEN_OBJECTS
DEPTH
LACK_OF_COHESION_OF_METHODS
NUM_OF_CHILDREN
DEP_ON_CHILD
FAN_IN
RESPONSE_FOR_CLASS
WEIGHTED_METHODS_PER_CLASS

Table 6: Object Oriented Static Measures.

MEASURENAME

LOC_BLANK
BRANCH_COUNT
LOC_CODE_AND_COMMENT
LOC_COMMENTS
CYCLOMATIC_COMPLEXITY
DESIGN_COMPLEXITY
ESSENTIAL_COMPLEXITY
LOC_EXECUTABLE
HALSTEAD_CONTENT
HALSTEAD_DIFFICULTY
HALSTEAD_EFFORT
HALSTEAD_ERROR_EST
HALSTEAD_LENGTH
HALSTEAD_LEVEL
HALSTEAD_PROG_TIME
HALSTEAD_VOLUME
NUM_OPERANDS
NUM_OPERATORS
NUM_UNIQUE_OPERANDS
NUM_UNIQUE_OPERATORS
LOC_TOTAL

Table 7: Method Level Measures Transformed to Class Level

• minNUM_UNIQUE_OPERATORS

• maxNUM_UNIQUE_OPERATORS

• avgNUM_UNIQUE_OPERATORS

• sumNUM_UNIQUE_OPERATORS

The long names of the static measures in Table 6 and Table 7 can
be found at http://mdp.ivv.nasa.gov/mdp_glossary.html.


